	A	В	С	D	E	F	G	Н	I	
1	CALCULA	TION COV	ER SHEET		Date:	2020-07-31			Λ	
2		Author: Alex Doll Revision $/_1$								
3	Project:	OH_052			Calc No:	n/a				
4	Title:	tle: Tabulation of industrial mill data, best fit equations for PSDs								
5										
6										
7	Purpose:					istribution (PS	SD) models	is the best		
8	-	fit for indus	trial data co	llected by A	GD's custo	omers.				
9										
10	Basis / As	sumptions								
11	-		•			potential regr	ession equa	ations, and		
12	-	the best fitti	ing of the th	ree equation	ns is tabula	ted.				
13	-									
14	-	The three p	otential reg	ression equ	ations are:					
15	-									
16	<u> </u>	<u>Abbreviation</u>		Model		Equation				
17	-	RR		Rosin-Ram		%R = exp(-	/			
18	-	GS		Gaudin-Sh	uhmann	$%P = (x/K)^{1}$				
19	$\sqrt{2}$ Bond $\sqrt{2}$ %P = 0.5(x/P_{50})^{(1)}(1)									
20	-									
21	-	Nomenclatu								
22	-		fitting const							
23	K fitting constant for the GS equation									
24	-		fitting const		•					
25	-		fitting const			n				
26	-		50% passir	-						
27	-		cumulative	• •	-					
28	-		cumulative				1)			
29	-	х	particle size	e (more spe	cifically, the	e size of intere	est)			
30	N/ a 4 la 1 -	Portiolo di-	o diatributio	no aro platt	od and acc	accord to data	rmino whiel	a of the		
31	Method:	three poter	tial equatio	ns is a "bes	t fit" for the	essed to dete data betweer	n the 80% a	nd 20%		
32	+	passing siz	es. Models	are not inte	ended to de	escribe the high	hly variable	e "tails"		
33 34	-	observed b	etween 80%	% and 100%	b passing, a	and 0% to 20 ³	% passing.			
34	-	The choice	of "best fit"	is done by	a combinat	tion of residua	al sum of so	uares (R^2)		
35	+	of the logar	rithmic value	es, and visu	al interpret	ation of the op	perator. The	e criterìa 🏾		
30	+	used by the	e operator is	s "which mo	del would y	ou use if you	needed to p	predict the		
38	+	'P _{xx} ' of a ci	urve?							
39	+	Data some	times fits be	tween two	of the regre	ssion curves;	in such a c	ase the two		
40	+	curves it fit	s between a	ire both pre	sented pret	fixed with "½"	. Multiple re	esults (Eg.		
41	1	parallel equipment) given by "x2". SAG feed from secondary or pre-crushing is prefixed with '*'.								
42										
72										

	A	В	С	D	E	F	G	Н	I		
1	CALCULA	TION COV	ER SHEET		Date:	2020-07-31			\wedge		
2					Author:	Alex Doll		Revision			
3	Project:	OH_052			Calc No:	n/a					
4	Title: Tabulation of industrial mill data, best fit equations for PSDs										
5											
118											
119	119 Conclusions & Recommendations:										
120		PSD of a	SAG Feed		use a	GS model					
121		PSD of a	SAG Scree	n U/S	use a	RR model					
122]	PSD of a	Cyclone O/	F	use a	GS model					
123]	PSD of a	BM Dischar	rge	use a	RR model					
124	Cyclone U/F is undetermined, partially because it often doesn't fit these standard models.										

2020-07-31

Table

	Α	В	С	D	E	F	G
1	Project	Description	SAG Feed	SAG Screen U/S	Cyclone U/F	Cyclone O/F	BM Discharge
2	102	Skarn polymetallic	GS	RR		$\sqrt{2}$	
3	88	Labrador Trough Fe	none	RR			
4	120	African diamond (Pri cr prod)	GS				
5	120	African diamond (Pri cr prod)	GS				
6	117	Canadian Shield greenstone				GS (× 6)	
7	117	Canadian Shield greenstone			RF	R×3, (½RR,½G	S)
8	117	Canadian Shield greenstone	*GS or √2	RR or GS	RR×2	RR×2	RR×2
9	117	Canadian Shield greenstone		RR	RR	GS	
10	138	Canadian Shield greenstone	*GS		RR	GS	RR
11	116	Cordilleran Cu porphyry	GS	RR	bad RR	1⁄2RR,1⁄2GS	RR
12	116	Cordilleran Cu porphyry	GS	bad RR	bad RR	GS×2	RR×2
13	104	Cordilleran Cu porphyry	*GS	RR	none (bimodal)	RR	
14	104	Cordilleran Cu porphyry	*√2	GS	none (bimodal)	GS	RR
15	104	Cordilleran Cu porphyry	*GS or √2	RR	GS	GS	RR
16	97	Andean Cu porphyry	(GS, RR, ½GS+½RR, RR, GS)				
17	mc-01	Andean Cu porphyry		none		GS	
18	mc-02	Andean Cu porphyry		RR		GS	
19	mc-03	Andean Cu porphyry		GS		GS	
20	mc-04	Andean Cu porphyry	GS	RR		RR	
21	mc-05	Andean Cu porphyry	GS	RR		½RR,1⁄2GS	
22	mc-06	Andean Cu porphyry	GS	RR			
23	mc-07	Andean Cu porphyry	GS	RR			
24	mc-08	other Cu porphyry	poor GS/RR	RR		1⁄2RR,1⁄2GS	
25	mc-09	Andean skarn	RR,GS	RR×4		RR×4	
26	mc-10	Andean polymetalic	RR (GS close)	RR		RR	
27	mc-11	Andean Cu porphyry	RR	RR		GS×2	
28	mc-12	Andean Cu porphyry	none	(bad RR)×2		GS×2	
29	mc-13	Andean Cu porphyry	RR×2	RR×2		GS×2	
30	96	Andean Cu porphyry	*GS or √2	RR		GS,RR	RR×2
31							
32		In general, best models are:	GS	RR	undetermined	GS	RR

Page 1 of 5