Fine grinding, a refresher

Alex Doll SAGMILLING.COM Logan Lake, BC Canada

Purpose

- Metallurgists use models as tools, and
- each tool is suited to a particular task.
- Fine grinding requires different tools to "regular" grinding.

Bond work index

- Commonly used model that describes conventional grinding.
- Based on fixed exponent of -0.5.
- Empirically fit to data collected in the 1930's and 1940's.

Bond work index

- Did not fit all data and often has issues at upper and lower size boundaries.
- Fudges, kludges and bodges are applied to "finer" grinding, Eg. below 75 μm.

The bigger picture

- Bond's model is one of a larger family of power-based models.
- Other examples:
 - Von Rittinger's model $E = a X^{-1}$
 - Kick's model $E \propto X_1 / X_0$

- Overall model $E = a \times X^{-b}$ where:
 - E is specific energy consumption, kWh/t
 - X is particle 80%
 passing size, μm
 - a and b are fitted parameters.

The following may be disturbing to some viewers.

User discretion is advised.

The bigger picture

• Many power-based models are solutions to a single equation:

$$\frac{dE}{dx} = K \times X^{-c}$$

where:

- K and c are ore-specific fitted constants
- One integrated form:

$$E = a \times \left(X_{1}^{-b} - X_{0}^{-b} \right)$$

Hukki's Conjecture

• R. Hukki did experiments measuring specific energy consumption across a range of sizes

Hukki's Conjuecture

- The exponent changes with particle size.
- A fixed exponent is suitable for limited size ranges.

Fine grinding

- The definition of "fine grinding" is somewhat material-specific. Propose the definition be based on "where Bond's model no longer applies".
- Generally translates to sizes below 100 $\mu m,$ becomes more acute below 75 $\mu m.$

Option 1: Use a variable exponent

• Jar mill test from Merriam et al, CMP 2015

Option 2: use exponent -1

• Von Rittinger's model generally works better in 50 μm to 100 μm size range.

Fitting data from Aureus Mining (2012) Bond ball mill tests on gold ore

Option 3: Use material-specific exponents

<u>Material</u>	<u>Exponent</u>	<u>Equation</u>	<u>Size range</u>
Gold ore (hydrothermal, greenstone, silicate hosted)	-0.9	$E = C x^{-0.9}$	500 → 40 µm
Lead-zinc ore (massive sulphide)	-1.0 -1.4	$E = C x^{-1.0}$ $E = C x^{-1.4}$	65 → 45 μm 45 → 5 μm
Porphyry ore (silica, feldspars, minor sulphides)	-0.5	$E = C x^{-0.5}$	235 → 78 µm
Copper rougher concentrate (chalcopyrite and pyrite)	-1.5	$E = C x^{-1.5}$	110 → 33 µm
Pyrite concentrate	-2.0	$E = C x^{-2.0}$	$40 \rightarrow 8 \ \mu m$
Base metal matte (copper, nickel)	-1.5	$E = C x^{-1.5}$	$300 \ \rightarrow \ 60 \ \mu m$
Iron ore (hematite, magnetite)	-0.7 -1.8	$E = C \times -0.7$ $E = C \times -1.8$	160 → 75 µm 75 → 15 µm
Zinc concentrate (Gao et al, 2007)	-1.2	$E = C x^{-1.2}$	20 → 5 µm

Comments

- Assumes that specific energy consumption is material-specific and size-specific. Any "efficient" equipment should give similar results.
 - Equipment vendors may have different opinions.
- Fitting to plant data will give an equipmentspecific model. Other classes of equipment may be more efficient.
 - Grinding media size, for example, affects fine grinding efficiency.

Conclusions

- Stop using Bond models for fine grinding.
 - Use specific energy consumption & size in NI43-101 reports.
- Use an appropriate model for fine grinding.

